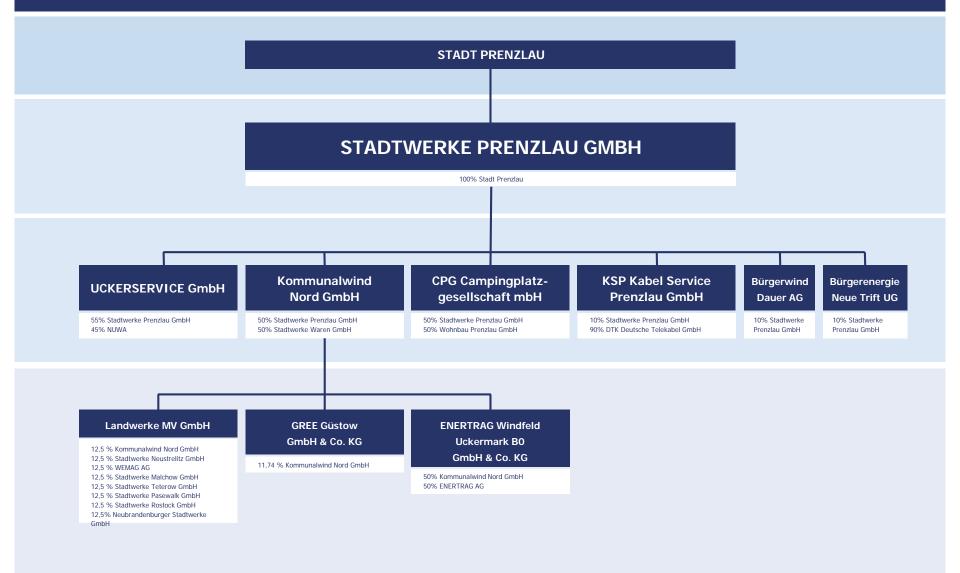


"Grüne Wärme für Brandenburg – Perspektiven für die kommunale Wärmewende" am 24.08.2021 (digital viaWebEx)

Geothermienutzung in Prenzlau Rückblick und Perspektiven

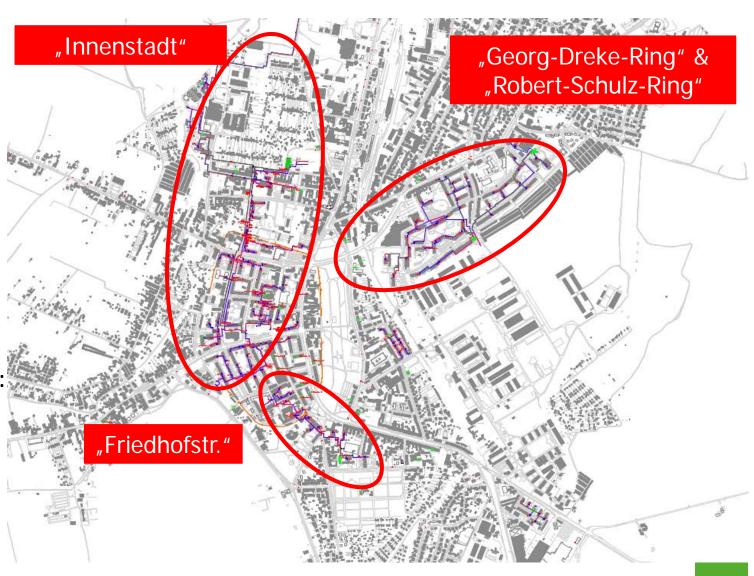
Gliederung


- Steckbrief Stadtwerke Prenzlau GmbH
- 2. Fernwärmeversorgung in Prenzlau
- 3. Nutzung der Geothermie Ende der 80er Jahre
- Aktuelle Geothermienutzung
- 5. Perspektiven der Geothermienutzung in Prenzlau
 - 5.1. Wärmespeicherung
 - 5.2. Kombination aus Geothermie und Großwärmepumpe
- 6. Fazit

1. Steckbrief Stadtwerke Prenzlau GmbH

2. Fernwärmeversorgung in Prenzlau

Trassenlänge:


33,09 km

HA-Stationen:

172

Heizungsanlagen

12

2. Fernwärmeversorgung in Prenzlau

FW-Versorgungsgebiet Innenstadt:

Primärenergiefaktor 0,22

Biogasanlage

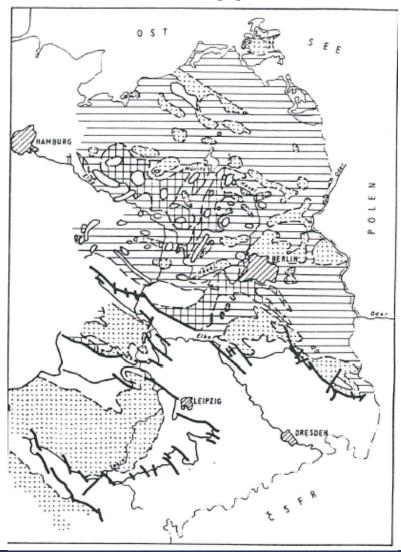
- der Firma loick-bioenergie GmbH
- 2 MWth

Klärgasanlage

- der Stadtwerke Prenzlau GmbH
- 360 kWth

Geothermie

- der Stadtwerke Prenzlau GmbH
- (2.786 m, 108 °C)
- 150 kWth
- Installierte Leistung: 11 MW
- Eingespeiste Arbeit: 16.000 MWh


Erneuerbare Energie: 69 %

3. Nutzung der Geothermie Ende der 80er Jahre

Geowissenschaftliche Erkundung geothermischer Lagerstätten

nicht perspektiv (keine Nutzhorizonte)

gering perspektiv
(Nutzhorizonte im Temperaturniveau < 40°C

perspektiv
(Nutzhorizonte im Temperaturniveau 40-80°C)

hochperspektiv
(Nutzhorizonte im Temperaturniveau > 80°C)

Bild 21: Geologische Voraussetzungen zur Nutzung niedrigthermaler Schichtwässer im östlichen Deutschland

Quelle: Geothermie Wärme aus der Erde, (Bußmann/Kabus/Seibt (Hrsg.), Verlag C.F.Müller Karlsruhe

3. Nutzung der Geothermie Ende der 80er Jahre

Die Inbetriebnahme der geothermischen Heizzentrale Prenzlau erfolgte im Jahr 1988.

Wärmetauscher und Filterstation der Geothermischen Heizzentrale in Prenzlau

(Hrsg.), Verlag C.F.Müller Karlsruhe

3. Nutzung der Geothermie Ende der 80er Jahre

Ausgewählte Daten der Anlage:

2 Fördersonden: Nutzhorizont 983 – 1034 m

964 - 1004 m

9 ⁵/₈ Zoll Rohrtour

5 ¹/₂ Zoll Filter bzw. Drahtwickelfilter

Injektionssonde: Nutzhorizont 992 – 1009 m

9 ⁵/₈ Zoll Rohrtour

Abstand: zwischen Förder- und Injektionsstandort 1200 m

zwischen den Fördersonden 200 m

Geologische Bedingungen: Sandsteinschicht Sinemur / Hettang

(Erdgeschichtlich Stufen des Jura vor ca. 200 Mio. Jahren,

die ca. 20 Mio. Jahren andauerten.)

Nutzungsporosität: 24 – 30 %

Schichttemperatur: 44 – 47 °C

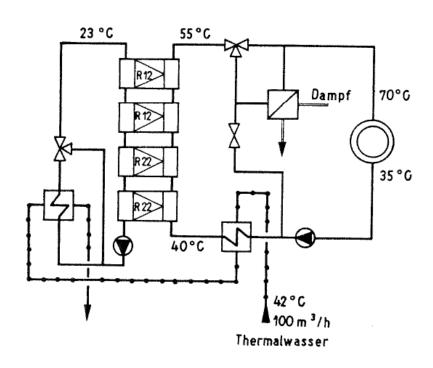
Gesamtmineralisation: 90 g/l

Thermalwasservolumenstrom: 100 m³/h

3. Nutzung der Geothermie Ende der 80er Jahre

Wärmeabnahme

Teil des Stadtzentrums


Wärmeleistungsbedarf 6,1 MW

Wärmebedarf 16.800 MWh/a

Heiznetztemperatur 70°C / 35°C

Geothermie deckte 75 % des Wärmeleistungsbedarfs und 95 % der Wärmeabgabe.

Schaltschema der Geothermischen Heizzentrale Prenzlau

3. Nutzung der Geothermie Ende der 80er Jahre

Der Betrieb der geothermischen Heizzentrale wurde Anfang der 90er Jahre eingestellt.

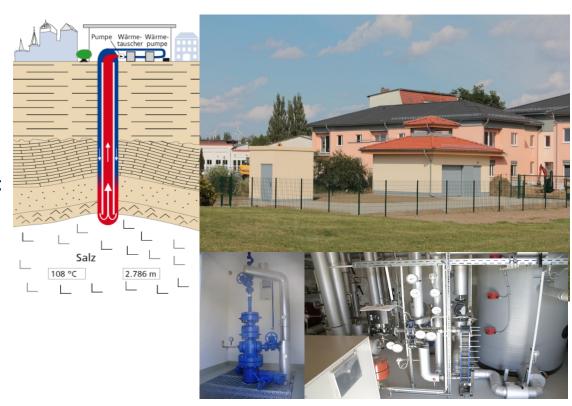
Gründe:

- Störanfälligkeit des geothermischen Anlagenteils durch hohe Mineralisierung
- Unzuverlässige Wärmepumpen
- Günstiges, "umweltfreundliches" Erdgas statt teuren Strom

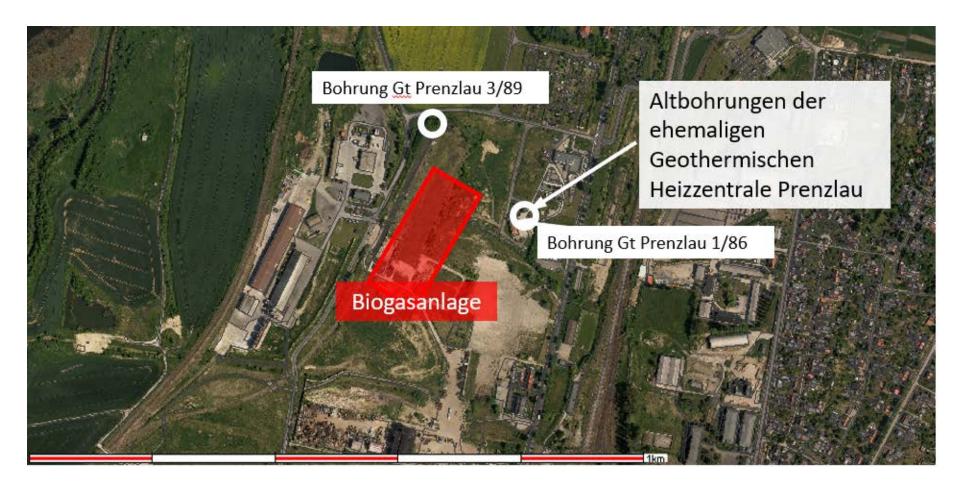
4. Aktuelle Geothermienutzung

Umbau einer Bohrung 1994, welche bis heute in Betrieb ist.

Technische Daten:

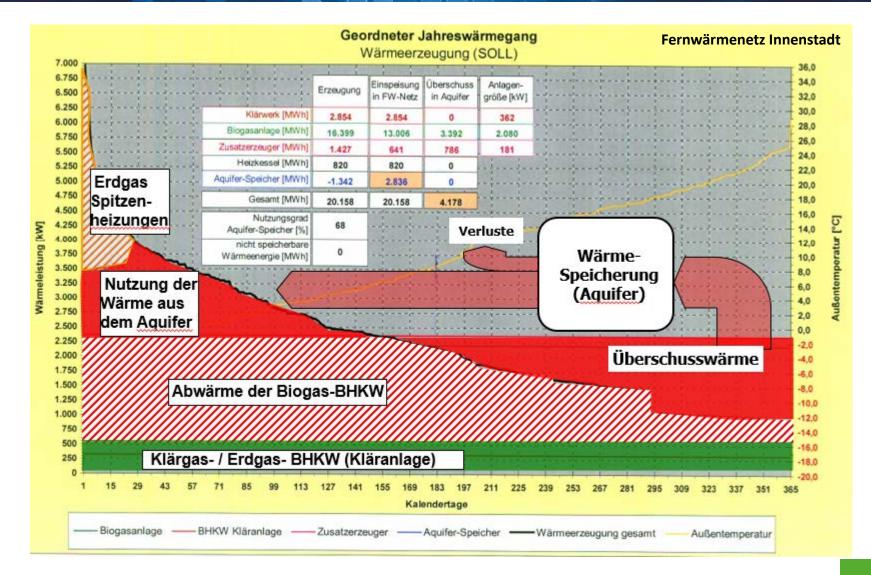

Teufe:

2.786 m


Reservoirtemperatur bei Endteufe: 108 °C

Innendurchmesser äußere Rohrtour: 9 6/8" (bis 950 m) 6 5/8" (ab 950 m)

Heizleistung der Sonde: Wärmeübertragung 120 kW


- 5. Perspektiven der Geothermienutzung in Prenzlau
- 5.1. Wärmespeicherung

STADTWERKE PRENZLAU

5. Perspektiven der Geothermienutzung in Prenzlau

5.1. Wärmespeicherung

- 5. Perspektiven der Geothermienutzung in Prenzlau
- 5.1. Wärmespeicherung

Das Projekt wurde nicht umgesetzt, weil:

- die Abwärme aus der Biogasanlage zeitweise nicht zur Verfügung stand
- überschüssiger Strom aus erneuerbaren Energien (Einspeisemanagement) für den Einsatz in der Wärmeversorgung weiterhin zu teuer ist
- Investitionskosten und Neubau nicht im richtigen Verhältnis standen

- 5. Perspektiven der Geothermienutzung in Prenzlau
- 5.2. Kombination aus Geothermie und Großwärmepumpe

Die obertägige Verfahrenstechnik geothermische Heizzentralen: Der Thermalwasserkreislauf

zu den Abnehmern bzw. zur Wärmepumpenanlage

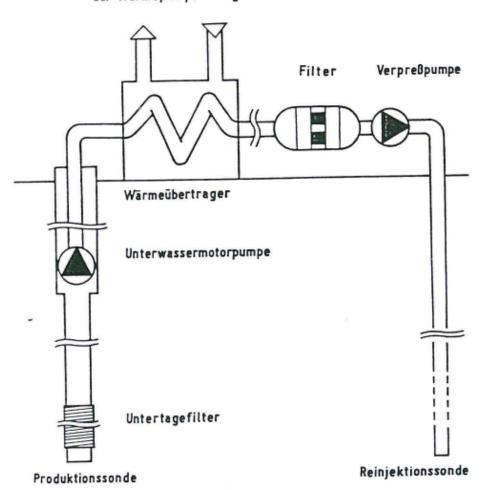


Bild 75: Prinzipielles Schema des Thermalkreislaufs geothermischer Heizzentralen

Quelle: Geothermie Wärme aus der Erde, (Bußmann/Kabus/Seibt (Hrsg.), Verlag C.F.Müller Karlsruhe

- 5. Perspektiven der Geothermienutzung in Prenzlau
- 5.1. Wärmespeicherung

Beauftragung einer Machbarkeitsstudie zur "Neuauflage der Geothermienutzung!"

- geologische Bedingungen sind bekannt
- mindestens eine Bohrung ist vorhanden und nutzbar
- bergrechtliche Genehmigungen liegen bereit
- Großwärmepumpen stehen in besserer Qualität zur Verfügung
- salzwasserfeste Ausrüstung ist verfügbar

6. Fazit

Mit der Novelle des Bundes-Klimaschutzgesetzes werden die Klimaziele deutlich angehoben bzw. die Fristen verkürzt.

Diese Neuausrichtung erhöht den Druck auf die Energiewirtschaft.

Ziel des Geothermieprojektes:

- CO2-Emissionen mindern
- Fernwärmekunden in Prenzlau weitestgehend von CO2-Abgabe befreien

