Methanation of CO$_2$

the power to gas approach

Klaus Müller, Johannes Israel, Fabian Rachow, Michael Fleige, Matthias Städter, Dieter Schmeißer

Chair Applied Physics, 03046 Cottbus, Germany
Brandenburgische Technische Universität Cottbus (BTU)
The Power to Gas approach

1. Surplus from renewable energies
2. \(\text{H}_2 \) (Electrolysis of Water)
3. \(\text{CO}_2 \) (flue gas, Oxyfuel, Biogas)
4. Methanation: \(\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \)
5. Storage
6. Gas to Power/Gas to ?
The Sabatier Reaction

\[\text{CO}_2 + 4 \text{H}_2 \rightarrow \text{CH}_4 + 2 \text{H}_2\text{O} \quad \Delta H^0 = -167 \text{ kJ/mol}, \text{exothermic at } 25^\circ \text{C} \]

Conversion \(X \propto \exp \left(-\frac{E_{\text{Activation}}}{RT} \right) \)

For a NiO/SiO\(_2\) catalyst, an activation energy of 56.0 kJ/mol is extracted.

For a RuO\(_2\)/Al\(_2\)O\(_3\) catalyst, an activation energy of 70.4 kJ/mol is calculated.
Reaction of CO$_2$, even with H$_2$ is slow at low temperatures: We need an enhancement of the reaction rate: We need a catalyst!

Catalysts:
- enhancement of reaction rate
- without structural/chemical changes
- without change of thermodynamic equilibrium

- Enables lower energy effort for reactions
- Reactions in industrial scale (for example Haber-Bosch-method)
- selective production without byproducts
- the „workhorse“ of chemical industry
- very important for CO$_2$ - utilisation

Ref: Hans Niemantsverdriet, University of Technology, Eindhoven
Experimental setup schematic

Reaction Line 1:
- MFC-2a: 20-200 sccm min\(^{-1}\) N\(_2\)
- MFC-2b: 10-100 sccm min\(^{-1}\) N\(_2\)
- MFC-2c: 0-10 sccm min\(^{-1}\) N\(_2\)

Reaction Line 2:
- MFC-1a: 156 – 2800 sccm min\(^{-1}\) H\(_2\)
- MFC-1b: 14 – 700 sccm min\(^{-1}\) CO\(_2\)
- MFC-1c: 100 sccm min\(^{-1}\) N\(_2\)

Financial Support: BMBF: GeoEN

~2 kg /d
Catalysts for Methanation of CO_2

RuO/Al$_2$O$_3$

NiO/SiO$_2$

Conversion

\[
X_{\text{CO}_2} = \frac{\dot{n}_{\text{CO}_2,\text{in}} - \dot{n}_{\text{CO}_2,\text{out}}}{\dot{n}_{\text{CO}_2,\text{in}}}
\]

Yield

\[
Y_{\text{CH}_4} = \frac{\dot{n}_{\text{CH}_4,\text{out}}}{\dot{n}_{\text{CO}_2,\text{in}}}
\]

Selectivity

\[
S_{\text{CH}_4} = \frac{\dot{n}_{\text{CH}_4,\text{out}}}{\dot{n}_{\text{CO}_2,\text{in}} - \dot{n}_{\text{CO}_2,\text{out}}}
\]
Stability

RuO/Al₂O₃ Catalyst

NiO/SiO₂ Catalyst

Temperatur 350°C

Übersicht über die Stabilität der beiden Katalysatoren RuO/Al₂O₃ und NiO/SiO₂ unter der Bedingung einer Reaktortemperatur von 350°C. Die Grafiken zeigen die Veränderung der Umsatzrate, Ausbeute an Methan und Selektivität über die Zeit.
Technical Oxyfuel CO₂

NiO/SiO₂ catalyst

Composition of Oxyfuel CO₂

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>>99.7%</td>
</tr>
<tr>
<td>N₂, Ar, O₂</td>
<td><0.3%</td>
</tr>
<tr>
<td>H₂O</td>
<td>< 50 ppm</td>
</tr>
<tr>
<td>SO₂</td>
<td>< 2.5 ppm</td>
</tr>
<tr>
<td>SO₃</td>
<td>< 0.5 ppm</td>
</tr>
<tr>
<td>CO</td>
<td>< 10 ppm</td>
</tr>
<tr>
<td>NO</td>
<td>< 5.0 ppm</td>
</tr>
<tr>
<td>NO₂</td>
<td>< 15 ppm</td>
</tr>
</tbody>
</table>

Reference: Vattenfall Europe, Pilot Plant Schwarze Pumpe

In technical oxyfuel CO₂ (from pilot plant Schwarze Pumpe, Vattenfall) the conversion remains stable and is not influenced by contamination,

Synthetic mixtures with more SO₂ (12.5ppm) and NO₂ (25ppm) show also no differences in performance.
The direct CO₂ methanation of flue gas from conventional power plants

typical compositions

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>N₂</th>
<th>O₂</th>
<th>H₂O</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>H₂S</th>
<th>CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue gas</td>
<td>14%</td>
<td>75%</td>
<td>5%</td>
<td>4%</td>
<td><90ppm</td>
<td><120ppm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxyfuel</td>
<td>>99%</td>
<td><0,3%</td>
<td>>0,3%</td>
<td><50ppm</td>
<td><2,5ppm</td>
<td><15ppm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Biogas</td>
<td>25-50%</td>
<td>0-10%</td>
<td>0-1%</td>
<td>0-6%</td>
<td>-</td>
<td>-</td>
<td>0-3%</td>
<td>50-75%</td>
</tr>
</tbody>
</table>

A mixture of five parts N₂ and one part CO₂ reflects a synthetic flue gas composition. Four parts H₂ are necessary as additive for the methanation:

Synthetic gas mixture N₂: CO₂ :H₂ = 5:1:4

but without oxygen and minor SO₂ and NO₂ contaminations.

Financial Support BMWi/03ET7002A
Methanation in **synthetic flue gas**

Reference gas mixture with $N_2:CO_2:H_2 = 5:1:4$

NiO/SiO$_2$ catalyst

- A **highly selective** conversion of CO$_2$ with a CH$_4$ yield $> 80\%$ was measured also for flue gas.
- The **catalyst performance is stable** investigated time frame of 2 days.
- Influence of oxygen is due to oxygen hydrogen reaction.
Demonstration plant

- Upscaling to 1.) 20g Catalyst 2) 5-10kg Catalyst
- Demonstration plant for **estimation of energy balance and costs for industrial application**

Technical data

- Catalyst:
 Nickel on Silica/Alumina wt% 66
- Reactor volume:
 30 dm3
- Amount of catalyst:
 up to 2 kg
- Temperature:
 350°C
- Pressure:
 10 bar
- maximal gas flow:
 1200 Nm3/Day -> 500 kg CO$_2$/Day
- CH$_4$ Yield:
 200 Nm3/Day

Financial support: EFRE/80149806)
Demonstrator – Setup of reactor

- UHV Vacuum chamber
- Quadrupole mass-spectrometer
- Cooling trap
- Tube reactor
- Preheater
- Mass Flow Controller
- Thermoelements for temperature control inside reactor

Financial support: EFRE/80149806)
Laboratory scale vs Demonstrator

Laboratory scale
- Conversion > 85%
- Yield > 85%
- Selectivity = 100%

Demonstrator
- Conversion > 80%
- Yield > 80%
- Selectivity = 90 – 100%

Financial support: EFRE/80149806)
Possible Cooperations

• Catalyst Development for Mass Production

• Reactor design for the Sabatier reaction in technical scale

• Production of Methanol from CO$_2$: Catalyst development, Scale up into technical value